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The concentration field in the neighborhood of a solid sphere in a Stokes 
stream with a first order chemical reaction taking place on the sphere surface 
is determined by the method of joining asymptotic expansions (in high P&let 
number). Dependence of the total diffusion flux at the sphere surface on the 
chemical reaction rate is determined. It is shown that depending on the con- 
stant of chemical reaction rate a region of kinetic mode may be absent in the 

neighborhood of the forward stagnation point, while in that of the rear stag - 
nation point there always exists a region of the diffusion mode of the process 

of chemical reaction. Saturation of the diffusion flux with increasing P&let 
number is disclosed. Concentration distribution in the diffusion trail region 
is determined and its structure investigated, 

The problem of diffusion on a reacting plane surface with mixed kinetics was re - 
duced in [l] to solving an ordinary differential equation by the method of integral 

transformations, The diffusion on a sphere proves to be more complex, and a method 

similar to that in [2] does not permit the reduction of the problem to the solution of an 
ordinary equation. It is only suitable for estimating the total diffusion flux at the sphere 
surface. 

1. Statement of the problem. Concentration dirtrlbutlon in 
the diffusion boundary layer. The convective diffusion of matter on a solid 

sphere in a Stokes stream of viscous incompressible fluid whose velocity away from the 
sphere is Lr . It is assumed that the P&let number P = aU / D is high ( a is the 
sphere radius and D is the diffusion coefficient) and that a first order chemical reac- 
tion at constant rate k’ takes place at the particle surface. 

In the spherical system of coordinates r, 8 attached to the particle the equation 
of convective diffusion and the boundary conditions are of the form 

where c is the concentration of matter, I) is the stream function, and angle 8 is 

measured from the direction of the oncoming stream. 
The problem of concentration distribution is formulated in (1.1) in dimensionless 
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variables with the sphere radius, the stream velocity, and concentration at infinity taken 
as reference quantities, 

The dimensionless stream function of a Stokes flow past the particle is of the form 

The asymptotic analysis of problem (1.1) , (1.2) shows [3] that when F < i it is 
possible to discern in the particle neighborhood several characteristic regions with dif- 
ferent mass transport mechanisms . These are: the external region e, the diffusion 

boundary layer d , and the diffusion trail region w which consists of zones Wci) (i = 

1, 2, 3, 4). In each of these zones Eq. (1.1) is approximated by the principal terms of 
expansions in the small parameter F. Congruence of solutions in separate regions is 
achieved by asymptotic joining at their nominal boundaries. 

In the outer region e = (r ~~ I 9 E, 8 (( 8) (here and below the inequalities in 
braces indicate the order of characteristic dimensions of a particular region) the right- 
hand side of Eq. (1.1) is negligibly small, diffusion and transport of matter are insig - 
nificant, and concentration is constant and equal to that at infinity, i. e. c@) -=: I. 

In the forward stagnation point region I) = tr - t < F, .X - &I -=g &j Eq. (1.1) can 
be somewhat simp~fied, but the terms that define diffusion in both the tangential and 
normal directions remain in it. Analysis shows that the effect of this region on concent- 

ration distribution in the diffusion boundary layer, as well as the contribution of that re- 
gion to the magnitude of ths total diffusion stream on the particle surface is small, 

hence it can be neglected in the calculation of the over-all mass transport between par- 
ticle and stream to within the principal term of expansion in powers of t: . 

The determining factor in the transport of the dissolved constituent to the particle 

surface is the process of convective diffusion in the diffusion boundary layer d = {r 

- 1 < 0 (E), 0 > 0 (E)}, which consists of convection along the particle surface 
and diffusion in the transverse direction. 

Substituting variables 

and retaining the principal terms of expansions in parameter E, for the concentration 
distribution in the diffusion boundary layer d from (1.1) and (1.2) we obtain the 

equation 
Bc(“) 

dt 
__ E_’ &Y(d) 

dp 
(0 < I < f,,) 

(1.3) 

A solution of Eq. (1.3) of the diffusion boundary layer with the condition of total 
absorption of matter at the sphere surface (k = 00) was obtained in [l]. It can be 
written as follows: 

c*(d) (L t) = r-’ (*/a) y (‘/a. 5” / 9) (1.4) 
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Y?/3,4 = s 
0 

e-YW, I- (k) = y (f ) _) 

We introduce the substitution z = ‘1s ES12 and seek the solution of the complete 
problem (1.3) in the form c(@ = c*(‘~) - u; for the unknown function u we obtain 
the equation 

(1.5) 

whose solution is sought in the form 

t 

u (2, t) = -$-) 1 0 (h) (t - h)-‘!3exp (- x2) dh (1.6) 
3 

(0 < t < to), “x = ‘/2 2 (t - hp 

Function (1.6) satisfies the equation and the first two boundary conditions (1.5) 
for any function @ (3) in the interval 0 < t < to has the following properties [4]: 

2-113 t 
limu=- 

I’ (‘/3)j 5 
CD (h) (t - A)-Wh 

z-4 

~&n(-z~l~$=m(t) 

(1.7) 

The last of boundary conditions (1.5) and the properties (1.7) imply that function 
@ (x) is a solution of the integral equation 

q (Lx) CD (32) + k* i 0 (h) (5 - IL)-Wh + ap (5) = 0 (1.8) 

kl (x) = Tj (x) A., k” = 3-“3r-1 (“/,) ,&; a = 2’hr- (l/J 

The case in which functions p (x) and tj (z) are simultaneously some constants 
was considered in [4]. 

Function q (x) in Eq. (1.8) has the following properties : 

5--f 0, I, cx) __+ 3vs2-lbyh 

x--t t,, 7 (x) -+ 3*‘32-“3 (t, - ~)“a 

and in the neighborhood of point x = 0 it can be represented by the series 
al 

‘1 (z) = 2 a, (X)(s?z+r)‘s; ao = 3+2-*f3, a, = l/s, . . . (1.9) 
n=o 

Because of this we seek a solution of Eq. (1.8) of the form 

(1.10) 

Substituting expression (1.10) into Eq. (1.8) and equating coefficients at like po- 
wers of x with allowance for (1.9)) we obtain the recurrent formula 
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b, = - (cm, + kil akb,-k) (a0 + k*&)-l (1.11) 

B, = B (l/,, 2/3 (n + I)), B (p, q) = 1 v--l (1 - z)*-% = 
0 

I- (P) r 02) I- (P + 4) 
where B (p, q) is the beta function. 

For the first two terms of series (1.10) we have 

b. = _ aa0 
a, + k*Bo ’ 

bI = aa 
a,, + k*B1 + (a, + k*By;:+ k*B,) 

There exists a neighborhood of point x = 0, where the series (1. lo), (1.11) is 
convergent. 

To prove this it is sufficient to construct a series dominating (1.10). We represent 
the series in the form 

n(x) = a@” + Y (Z), 

Q, (z) = boa?‘* + y (5)) y (z) = ‘j bnd2n-1)'3 
n-1 

then from formula (1.8) we obtain for the determination of function y the following 
integral equation : 

WvW+k*~z4M s-h)%h+iP(r,q(z)) =L(Y,q(z))= 0 

0 

P(r,r)(x))= 
ak"B, 

a0 + k*B, 
[q (z) Lx+ - a,] 

Since series (1.9) is convergent, hence by Abel’s test of convergence ( substituting 
10 = aY3) the series 

is also convergent. 

n* (x) = i I an 1 ,m+w3 (1.12) 
n=o 

Let us consider the series 

y* @.. = .+j b,*z(2n-r)/a; 
n=1 

(1.13) 

G,* =--alan ,-- i ,a&.+ bo* =b, 
k=I 

which can be obtained by equating to zero the integral term in equationL(y, q*(s))=0 , 
and is an expansion in powers of ~“1 of the expression 

Y*W=--F@, 11*(4)I~*(x)l-l 

Hence the series (1.13) is convergent for at least such r for which series (1.12) is 
convergent and the inequality 

is satisfied. 
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Since series (1.13) is convergent, the series 

which dominates the input series (1.10) is also convergent in the same interval, 
Equation (1.9) was analyzed by numerical methods. For isolating the singularity 

in the neighborhood of point x = 0 the representation in the form of series (1.10) was 

used. Derived results are discussed in Sect. 3. 
In what follows the complete solution for the diffusion boundary layer in terms of 

function @ is used in the form 

(1.14) 

2. Concentration dfrtributlon in the diffurion trail. Let us con- 
sider the diffusion trail region @‘consisting of four characteristic zones : the convection 

boundary layer @‘Ot, the inner zone W(@ , the rear stagnation point zone lW3), and 
the mixing zone W(e) [3], 

Contribution of the diffusion traiL zone, whose boundary corresponds to 0 - e,to 
the over-all diffusion flux to the particle surface is relatively small -0 (E) . However 
the concentration field in the trail plays an important part in the mass exchange of par - 
ticks moving in the trail of the preceding particle [5,6]. 

For convenience we introduce in ~edif~sion trail region an additional boundary 

condition (of symmetry) f& / dO]e=o = 0. In this case it is equivalent to the condi - 
tion of boundedness of solutions in WW on the axis of the stream. 

Estimate of separate terms of Eqs. (1.1) and (1.2) in the convection boundary 
layer region W(l) = {E < r - 1, e3 < 9 < E”) shows that the right-hand side 

of the equation can be neglected. Thus the condensation depends only on the stream 

function and is the same as in the diffusion boundary layer. The formula for concentra- 

tion in WC” is determined by joining with solution (1.14) for 0 - 0 and 5 -= const , 
and is of the form 

c(l) (E) === C(d) (5, t,) (t, = J&n / 8) (2.1) 

To investigate the trail inner zone R’(2) = {E < r - 1 < e-l, $ < Ed} and 
the mixing zone H’(4) = (8-f < r, I# < E*}, in which transport is small, we use 

for convective diffusion the equation in variables 

(2.2) 

taking into account that in these regions the first term in parentheses in the right- hand 
side of Eq. (1.1) can be neglected. In this equation all coefficients must be expressed 
in terms of 2‘ and 4 using for 4 the expression in (1.2). 

The rear stagnation point zone w(3) = (0 < E, r - 1 < E} in which radial 
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and tangential transport are significant, and the inner trail zone V$Qz) will be consi- 
dered together. 

The equation and the boundary condition for pvt?) in variables y - r - 1, and 
j --= c-3 47 are of the form 

(2.3) 

where the equation is obtained from (2.2) and the boundary condition at infinity ( j + 
0) defines the condition of joining with the solution in the convection boundary layer 

zone Wit’. In deriving this condition it was taken into account that 

where the integral is zero due to the properties of Eq, (1.8) and the derivative [&-s i 
aj]+, follows from the second property of function u (1.7). 

The equations and boundary conditions for W(a) in variables Y = ET-~ (r - 1) 
and s -.--z c-l8 are as follows: 

The last boundary condition is the condition of joining with the boundary layer so- 
lution (1.14). The statement of problems (2.4) and (2.3) must be supplemented by 
the condition 

c(3) (Y --f co) = c(‘?) (y * 0) (2.5) 

of congruence of solutions in zones Wc2) and i’V$a). 
Below we shall need the following statement. 
Let the solution of the boundary value problem contain a small parameter e be 

sought in region 9 with two regions cf, = (0 < Y < 0 (E), 0 < s < so} and 
b,=={O (E) < y, 0 < s < SO} (with coordinatesY= &-‘y in brandy in 0,) that 

correspond to different asymptotic expansions vi, i = 1, 2 (inner and outer, respec- 
tively) of the unknown function u (y, s, E). We assume that the boundary condition for 
LY when y := 0 does not contain E and is of the form 

y -_I 0, II (u, s) -- R, H,, (27, s) = n. 0 < yI < y2 < * . . < yn. . . * (2’ Q 
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where H Yk are operators homogeneous with respect to v , and y/; are arbitrary numbers, 
not necessarily integers. 

Let one of the boundary conditions (at infinity) for c’ (y, s, E) be of order unity, 
and let it be possible to have in G? a solution of the form 

e -+ 0, UC + A’* (y, s) $- 0 (EP), p > 0 (2.7) 

The boundary condition for u2 with y = 0 is then 

y = 0, IIY,, (vz, s) = 0 (2.8) 

This statement is proved by substituting u (y, s, F) into boundary condition (2.6) and 
passing to limit with E -+ 0 using formula (2.7). 

In the considered case yi = 1 and, consequently, the boundary condition for c@) 

is the same as that in (1.1). For the most important case of the diffusion boundary layer 
k > 0 (e-l) from this we obtain 

CC?’ JzI=o. e=coI~st = c! (2.9) 

which is accurate to within 0 (E.) . 
The solution of problem (2.3), (2.9) of concentration distribution inIV”)is sought 

in the form [5] 

c@)(y, 5) = (2E)k4y”q4, 5 := - $-; xc=- ce.o\ (2.10) 

and for the determination of function F (5) we have 

xFxr” + (1 - z)Fx’ + ‘12F = 0 
(- x)l’zF; (x+ = 0, F Ix--r-m 3 [ - x]‘/z, x E (-- x , 0] 

where the prime denotes differentiation with respect to 2. For the concentration distri- 
bution in lVz) we finally obtain 

c@) = (~E)‘,‘z I’ (3/z) Ay”cD (- 1/2, 1, - 5 / zy) (2.11) 
co 

Q, (a, c, 5) = 1 + c a(a+l). . .(afk--1) 
,‘” 

c(cfl)...(c+k-1) k! 
k=l 

where @ (a, c, x) is a degenerate hypergeometric function. 
Formulas (2.5) and (2.11) yield for concentration in the rear stagnation point zone 

wc3) the following boundary condition : 

d3) jy-r,a - E2l”r (3/,)AY”@) (-‘/,, 1, -3/8YSz) (2.12) 

problem (2.5), (2.12) was analyzed by numerical methods in [3 , Qfor k = 00. 
It was shown that the contribution of zone wc3) to the total diffusion flux on the sphere 
is of order E, i. e. it introduces a correction only in the third term of the expansion of 
solution of the diffusion boundary layer in series in F. This occurs also here, and we 

shall not analyze this zone. 
Let us now consider the mixing zone WC*) = {&-l (( r, 9 < E?}, in which, as 

in IV2), the diffusion along streamlines can be neglected. Concentration c(*)satisfies 
the following equation and boundary conditions : 

0) 1 
-=5ag ry 

(2.13) 
8P 

LE a,(4) 
p=&% 
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where the initial condition is determined by the joining of solution in the mixing zone 
with solutions in zones W(l) and @@?. The solution of problem (2.13) is of the form 

&) (I$, p) = u (i, 0) * [c(3) (6) - Lit] + (2.14) 
2A1’ y/J pm (- ‘jt, 1, -- 5’ / 4p) 

3, Dfffuaion flux on the r;phsrc surface. Dircurrion of rrrultr, 
Using the integral equation (1.8) for function CD , we obtain for the local diffusion flux 

j on the sphere surface the equation 

j (t) = g&N / &jr_, = E-Q] {t) [3 (IT*@) - tc> i a&-* 

From formula (1.4) for c+@) with allowance for the property (1.7) we obtain for 
the relation between functions CD and j 

Snbstitu~ng this expression into Eq. (1.8) for m(Z) we obtain the following integral 

equation for the local diffusion flnx: 

jh (x) = 1 - k*G (2) * js (z), j* (2) = j (s)k’ (3 .2) 

G (z) * w (J’) = \ w (h) q-l (h) (x - A)-“!* dh 
b 

Let us now investigate the two limit cases of k* > 1 and k* < 1, For the local 
flux j the first case relates to a fixed E and 1~ -+ 00, while the second corresponds to 
fixed k and E -+ 0. 

In the first case in the zero approximation we have the equation 

whose solution is of the form 

(3.3) 

which corresponds to the limit diffusion flux defined by the concentration c,f@ (1‘4). 
The next following approximation with respect to parameter ki is determined by 

Abel’s equation 
G * jl II;; -~-13’/ar (z/a)j’ (3 .4) 

whose solution is 
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j = j” _ @*)-I _g q (2) & f 1” (h) (x - lb)“‘~ dA 
0 

(k* = 3-“SF (S/a) Ice) 

The computation of integral (3.5) yields for the total flux the formula 

sin%j(T)dz = IO [I - 0.46(k*)+], IO = ‘:t’i,$ (3.6) 

0 

where 1, is the limit flux on the sphere when k = 00. 
In the second limit case (a --t 0) the integral equation (3.2) shows that the local 

diffusion flux over the whole surface of the sphere (except in the region of the rear stag- 
nation point d = 1 to - 5 1 < 0 (e-1’E) ) in the principal approximation with respect 
to parameter a is 

j (2) = FE (E -+ 0, k = const) (3.7) 

which means that when k < P’Is the mode of the reaction process over the whole sur- 
face of the sphere is close to kinetic. 

Since G * 1 --t oo when x + t,, there exist in the vicinity of the rear stagnation 

point a region of the boundary layer kind o = (1 t,, - x ) < e-i/E}, in which the lo - 

cal diffusion flux rapidly changes from unity to zero. Hence a region of the reaction 
diffusion mode always exists in the neighborhood of the rear stagnation point. The effect 

of region u on the total flux is insignificant. Hence we have 

Sh = k, Sh = I / 4n (E --t 0, k = const) (3.8) 

It is seen that the formulas for diffusion fluxes are independent of the P&let num - 
ber . This means that in the case of finite rate of surface reaction the Sherwood number 

with increasing P&let number tends to a constant value, shown in (3.8). 
This phenomenon may be considered to be the saturation of the diffusion flux and 

is explained by that with increasing P&let number the diffusion flux increases until the 
surface reaction becomes the limiting factor of the diffusion process. 

Solution of the integral equation (1.8) for intermediate values of k* was obtained 
by numerical methods. Function d, (5) is presented for several values of ?c* in Fig. 1 
by solid lines I, 2, and 3 which correspond to k* = 0.1, 1, and 10 , respectively. 
The first two terms of series (1.10) were used in numerical computations, and the un- 
known function was represented as CD (5) = box-“” + bia?‘a + cp (x). Function Cp (5) 
and its derivatives have no singularities along the segment [O, to]. 

Fig. 1 
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The obtained results make it possible to determine the total flux on the sphere sur - 
face. For the mean Sherwood number we have 

0 

where Sh, = 1, / 43t is the Sherwood number for the limit flux on the sphere. 
Dependence of the mean Sherwood number on parameter Ic* is shown in Fig, 2, 

Note that the numerical solution of the integral equation for cp (2) shows the relative 

contribution of that function to the mean Sherwood number to be fairly small. Thus 

for k* = 0.1 it amounts to 30% and rapidly diminishes with increasing k*, dropping 
to not more than 1w0 when k* ~- $ . Owing to this I it is possible to represent in a wide 
range of values of k* the dependence of total flux on the reaction rate constant by the 
approximate formula 

The results obtained in Sect. 1 make it possible to draw certain conclusions about 
the reaction modes at the sphere surface. 

We would point out that the conclusions reached in [Z] about the existence in the 
vicinity of the forward stagnation point of a region of kinetic reaction mode at any fi- 

nite rate of the latter is not generally valid. In fact I (1. lo), (1.11), and (1.8) imply 
that at the forward stagnation point 

and I ~ons~u~tly , j= kc{@ + kc 1 t_ = k, which means that in the general case a 
kinetic mode is absent. When k < ~‘1s we have j= k + o(c), and this shows that then 
the reaction in the neighborhood of point 0 = n is fairly close to the kinetic mode. As 
previously noted, a region of the diffusion 
hood of the rear stagnation point. 

Fig. 3 

reaction mode always exists in the neighbor - 

The present investigation shows that the so - 
lution derived in [l] for the limit flux on a 

particle is applicable only when k* > 1, 
i, e. k > P’la. This means that at fairly high 
P&let numbers the limit flux is not realized 
until very hi& rates of surface reaction are 
reached. 

These results may be compared, as in 
[2], with those obtained in [8J for low P&let 
numbers. The dependence of the Sherwood 
number on the P&let number is shown in 
Fig, 3, where the dash lines relate to low 
(according to [S] in a particular case of 
Stokes flow) and high P&let numbers and 
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several values of the constant of the reaction rate. Curves 1, 2, and 3 relate to 
k = 00, 10, and 1 .O, respectively. The possibility of interpolation for intermediate 
values of Peclet numbers and any chemical reaction rates can be seen from Fig. 3 , 
where some examples of interpolation are indicated by solid lines. The phenomenon 

of diffusion flux saturation with increasing Peclet number is also apparent in Fig. 3. 
We note in conclusion that the results obtained above can be extended to cases of 

more complex flow fields (see, e. g., [9]). 
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